
J Glob Optim (2007) 38:555–580
DOI 10.1007/s10898-006-9094-0

O R I G I NA L A RT I C L E

A new bilevel formulation for the vehicle routing
problem and a solution method using a genetic algorithm

Yannis Marinakis · Athanasios Migdalas ·
Panos M. Pardalos

Received: 7 September 2006 / Accepted: 7 September 2006 / Published online: 27 October 2006
© Springer Science+Business Media B.V. 2006

Abstract The Vehicle Routing Problem (VRP) is one of the most well studied
problems in operations research, both in real life problems and for scientific res-
earch purposes. During the last 50 years a number of different formulations have
been proposed, together with an even greater number of algorithms for the solution
of the problem. In this paper, the VRP is formulated as a problem of two decision
levels. In the first level, the decision maker assigns customers to the vehicles checking
the feasibility of the constructed routes (vehicle capacity constraints) and without
taking into account the sequence by which the vehicles will visit the customers. In the
second level, the decision maker finds the optimal routes of these assignments. The
decision maker of the first level, once the cost of each routing has been calculated
in the second level, estimates which assignment is the better one to choose. Based
on this formulation, a bilevel genetic algorithm is proposed. In the first level of the
proposed algorithm, a genetic algorithm is used for calculating the population of the
most promising assignments of customers to vehicles. In the second level of the pro-
posed algorithm, a Traveling Salesman Problem (TSP) is solved, independently for
each member of the population and for each assignment to vehicles. The algorithm
was tested on two sets of benchmark instances and gave very satisfactory results. In
both sets of instances the average quality is less than 1%. More specifically in the set
with the 14 classic instances proposed by Christofides, the quality is 0.479% and in
the second set with the 20 large scale vehicle routing problems, the quality is 0.826%.
The algorithm is ranked in the tenth place among the 36 most known and effective

Y. Marinakis (B) ·A. Migdalas
Decision Support Systems Laboratory, Department of Production Engineering and Management,
Technical University of Crete, 73100 Chania, Greece
e-mail: marinakis@ergasya.tuc.gr

A. Migdalas
e-mail: sakis@verenike.ergasya.tuc.gr

P. M. Pardalos
Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA
e-mail: pardalos@cao.ise.ufl.edu

556 J Glob Optim (2007) 38:555–580

algorithms in the literature for the first set of instances and in the sixth place among the
16 algorithms for the second set of instances. The computational time of the algorithm
is decreased significantly compared to other heuristic and metaheuristic algorithms
due to the fact that the Expanding Neighborhood Search Strategy is used.

Keywords Vehicle routing problem ·Metaheuristics · Bilevel programing ·
Genetic Algorithm

1 Introduction

The vehicle routing problem (VRP) or the capacitated vehicle routing problem
(CVRP) is often described as the problem in which vehicles based on a central depot
are required to visit geographically dispersed customers in order to fulfill known cus-
tomer demands. Each customer must be assigned to exactly one of the vehicles and
the total size of deliveries for customers assigned to each vehicle must not exceed the
vehicle capacity. The problem is to construct a low-cost, feasible set of routes—one for
each vehicle. A route is a sequence of locations that a vehicle must visit along with
the indication of the service it provides. The vehicle must start and finish its tour at
the depot.

We can say that the problem arises as a generalization of the traveling salesman
problem (TSP). The TSP requires the determination of a minimal cost cycle that
passes through each node in a relevant graph exactly once. If costs are symmetric, that
is, if the cost of traveling between two locations does not depend on the direction of
travel, we have a symmetric TSP otherwise we have an asymmetric TSP. The multiple
TSP arises if many salesmen or vehicles in the fleet are to leave from and return to
the same depot. There are no restrictions on the number of nodes that each vehicle
must visit except that each vehicle must visit at least one node. The most important
variants of the VRP can be found in the following [5,16,26,44].

As it can be observed from the large number of variants of the VRP when one
has to solve a real life VRP the first issue to deal with is the efficient formulation of
the problem. The efficient formulation together with a powerful and clever algorithm
(usually metaheuristic) based on the properties of the model gives to the decision
maker (or to the researcher) the opportunity to deal with a number of real life prob-
lems and to find a near—optimum solution without spending excessive computational
time. Here, the CVRP will be considered. In brief, the formulations of the CVRP are
divided in three different categories, Vehicle Flow Models, Commodity Flow Models,
and Set Partitioning Models. The Vehicle Flow Models use integer variables associated
with each arc [5,7,10]. They can easily be used when the cost of the solution can be
expressed as the sum of the costs associated with each arc. In the Commodity Flow
Models, additional integer variables are associated with the arcs that express the flow
of the commodities along the paths traveled by the vehicles [45]. Finally, in the Set
Partitioning Formulation [45], a collection of circuits with minimum cost is determined
which serves each customer once and, possibly, satisfies additional constraints. One of
the main drawbacks of the last models is the huge number of variables. The explicit
generation of all constraints is normally impractical, and one has to apply a column
generation approach to solve the linear programing relaxation of the last models.

One of the most important formulations that has ever been proposed for the solu-
tion of the problem is the formulation of Fisher and Jaikumar [10]. This formulation

J Glob Optim (2007) 38:555–580 557

belongs to the category of vehicle flow models. Fisher and Jaikumar proved that the
constraints of the problem can be separated in two sets. The first set of constraints are
the constraints of a generalized assignment problem and they ensure that each route
begins and ends at the depot, that every customer is served by some vehicle, and that
the load assigned to a vehicle is within capacity. The second set of constraints corre-
sponds to the constraints of a TSP for all customers of each vehicle. So, they solved
a generalized assignment problem approximation of the VRP in order to obtain an
assignment of customers. Subsequently, the customers assigned to each vehicle can be
sequenced using any Traveling Salesman algorithm.

The formulation of Fisher and Jaikumar gave us the idea that the VRP can be
formulated as a problem of two decision phases or as a problem of two decision levels.
By saying two levels it is meant that in each level a different problem is solved, but
the solution of the one level depends on the solution of the other. In particular it is
assumed that the decisions in the second level are reacting to the decisions of the first
level and that the decisions in the first level must be made by taking this fact into
consideration. This kind of formulation is called bilevel formulation. Thus, the VRP
can be viewed as a bilevel decision problem where in the first level decisions must
be made concerning the assignment of the customers to the routes and in the second
level decisions must be made concerning the routing of the customers.

A bilevel programing problem describes a hierarchical system which is composed
of two levels of decision makers [30]. The higher level decision maker, known as
leader, controls the decision variables y, while the lower level decision maker, known
as follower, controls the decision variables x. The interaction between the two levels
is modeled in their respective loss functions ϕ(x, y) and f (x, y) and often in the feasible
regions. The leader and the follower play a Stackelberg duopoly game. The idea of the
game is as follows: the first player, the leader, chooses y to minimize the loss function
ϕ(x, y), while the second player, the follower, reacts to leader’s decision by selecting
an admissible strategy x that minimizes his loss function f (x, y). Thus, the follower’s
decision depends upon the leader’s decision, i.e. x = x(y), and the leader is in full
knowledge of this. The general bilevel programing problem is stated as follows:

(BP) min
y∈Y

ϕ(x(y), y), (1)

subject to ψ(x(y), y) ≤ 0, (2)

where x(y) = arg min
x∈X

f (x, y), (3)

subject to g(x, y) ≤ 0, (4)

where X ⊂ Rn and Y ⊂ Rm are closed sets, ψ: X × Y → Rp and g: X × Y → Rq are
multifunctions, ϕ and f are real-valued functions.

The upper level (1) and (2) corresponds to the leader, while the lower level (3)
and (4) corresponds to the follower. The set S = {(x, y) : x ∈ X, y ∈ Y,ψ(x, y) ≤
0, g(x, y) ≤ 0} is the constraint set of BP. For fixed y ∈ Y, the set X(y) = {x ∈
X : g(x, y) ≤ 0} is the feasible set of the follower. The set R(y) = {x ∈ X : x ∈
arg minw∈X(y) f (w, y)} is called the rational reaction set of BP. The feasible set of BP is
F = {(x, y) ∈ S : x ∈ R(y)}. A feasible point (x�, y�) ∈ F is a Stackelberg equilibrium
(with the first player as the leader) if ϕ(x�, y�) ≤ ϕ(x, y) for all (x, y) ∈ F .

In the VRP, there is only one decision maker, although if we study the problem
from a specific view the leader might be considered as a decision maker of the com-
pany (decision maker of the first level) which assigns clusters of customers and the

558 J Glob Optim (2007) 38:555–580

follower might be considered as the dispatcher who chooses the optimum route for
servicing the customers in each cluster. This description is the key idea in the pro-
posed formulation. Two decisions must be made although there is probably only one
true decision maker. In the first phase (level), the decision maker assigns customers
to the vehicles, checking the feasibility of the constructed routes (vehicle capacity
constraints) without taking into account the sequence according to which the vehicle
will visit the customers (routing). The main interest of the first level decision maker
is to find all the promising assignments while the decision maker of the second level
finds the optimal routes of these assignments. The decision maker of the first level
estimates which is the best assignment based on the routing cost of the second level.

Based on such a two level formulation, a two level hybrid genetic algorithm is
proposed. In the first level of the proposed algorithm a genetic approach similar
to Hyb-GEN [28] is used in order to identify the most promising assignments of
customers in vehicles. In particular the initial population is created by applying the
MPNS-GRASP [29] and two local search algorithms are applied in order to improve
the cost of the individuals. The selected algorithms for this phase are the shift and
swap algorithms. In the second level of the proposed algorithm, a TSP is solved inde-
pendently for each member of the population and for each assignment in vehicles.
For the calculation of the routing, initially the MPNS-GRASP algorithm is used and
subsequently the Expanding Neighborhood Search (ENS) method is applied. Once
the decision maker of the first level is informed about the reaction of the follower he
decides which of the solutions will consist the population of the next generation. This
procedure is continued until convergence of the genetic algorithm or a prespecified
maximum number of iterations is reached.

This paper is organized as follows. In Sect. 2 the most important algorithms for the
solution of VRP are presented, in Sect. 3 the new proposed formulation is analyzed
and a detailed description of the proposed genetic algorithm is given in Sect. 4. In
Sect. 5, the computational results are presented and, finally, in the last section the
conclusions and the future research are given.

2 Algorithms for the solution of the capacitated vehicle routing problem

The VRP was first introduced by Dantzig and Ramser in 1959 (see Bodin et al. [5]).
As it is an NP-hard problem, the instances with a large number of customers cannot
be solved in optimality within reasonable time. For this reason a large number of
approximation techniques were proposed. These techniques are classified into two
main categories: Classical heuristics that were developed mostly between 1960 and
1990 and metaheuristics that were developed in the last 15 years. In the 1960s and
1970s the first attempts to solve the VRP focused on route building, route improve-
ment, and two-phase heuristics. In the route building heuristics, the arcs are selected
sequentially until a feasible solution has been created. Arcs are chosen based on some
minimization cost criterion. In the route improvement heuristics, starting from one
feasible solution, one more efficient solution is found by an interchange of a set of
arcs. The most known of these algorithms is the Clarke and Wright method [4]. The
2-opt, 3-opt, and Lin–Kernigham heuristics are the most known heuristics that belong
in the category of route improvement heuristics. In the two phase heuristics, known
as cluster first and route second heuristics, the customers are first assigned in vehicles
and then a route is constructed from every cluster, like Gillet–Miller algorithm [4]. In

J Glob Optim (2007) 38:555–580 559

this category also belongs the methods called route first cluster second in which first a
giant TSP tour is constructed and then this route is decomposed into feasible vehicle
routes. In the 1980s a number of mathematical programing procedures are proposed
for the solution of the problem. One of these procedures is the algorithm proposed
by Fisher and Jaikumar [10].

In the 1990s a number of algorithms, known as metaheuristics, that simulate physi-
cal phenomena, were applied for the solution of the VRP. Simulated annealing, genetic
algorithms, neural nets, tabu search, ant algorithms, together with a number of hybrid
techniques are the main categories of the metaheuristic procedures. These algorithms
have the ability to find their way out of local optima. In simulated annealing, this is
achieved by allowing the length of the tour even to increase with a certain probability.
Gradually the probability allowing the objective function value to increase is lowered
until no more transformations are possible. Tabu search uses a different technique
to get out of local optima. The algorithm keeps a list of forbidden transformations.
In this way, it may be necessary to use a transformation that deteriorates the objec-
tive function value in the next step. Genetic algorithms mimic the evolution process
in nature. Their basic operation is the mating of two tours in order to form a new
tour. Moreover, they use algorithmic analogs to mutation and selection. A neural
network consists of a network of elementary nodes (neurons) that are linked through
weighted connections. The nodes represent computational units, which are capable of
performing a simple computation, consisting of a summation of the weighted inputs.
The result of the computation of a unit constitutes its output. This output is used as
an input for the nodes to which it is linked through an ongoing connection. In the ant
system artificial ants searching the solution space simulate real ants searching their
environment, the objective values correspond to the quality of the food sources and
an adaptive memory corresponds to the pheromone trails. In addition, the artificial
ants are equipped with a local search function to guide their search through the set of
feasible solutions. The reader can find more detailed descriptions of these algorithms
in the survey papers [4,5,11,14,15,20,21,40].

3 Bilevel formulation for the vehicle routing problem

Let G = (V, E) be a graph where V is the vertex set and E the arc set. The customers
are indexed i = 2, . . . , n, j = 1, . . . , n and i = 1 refers to the depot. The vehicles are
indexed k = 1, . . . , K. The capacity of vehicle k is Qk. If the vehicles are homogeneous,
the capacity for all vehicles is equal and denoted by Q. A demand qj and a service time
stj are associated with each customer node j. The travel cost between customers i and j
is cij. The problem is to construct a low cost, feasible set of routes—one for each vehicle
(starting and finishing at the depot). A route is a sequence of locations that a vehicle
must visit along with the indication of the serve it provides [5]. The vehicle must start
and finish its tour at the depot. Customer orders cannot be split. The customers are
assigned to a single route until the routes reach capacity or time limits, subsequently
a new customer is selected as a seed customer for the new route and the process is
continued. A seed customer is a customer not yet assigned in a route that is used in
order to initialize a new route. The distance of the k seed customer from the depot
is dk.

In order to present the bilevel model for the problem, we define the following
variables:

560 J Glob Optim (2007) 38:555–580

zk =
{

1, if k is a seed customer,
0, otherwise,

xkj =
⎧⎨
⎩

1, if customer j belongs in the same route,
with the seed customer k,

0, otherwise

and

yij =
{
1, if edge (i, j) is in the route,
0, otherwise.

The bilevel formulation for the VRP is then:

(leader) min
x,z

K∑
k=1

dkzk +
K∑

k=1

n∑
j=1

ckjxkj +
n∑

i=1

n∑
j=1

cijyij, (5)

s.t.
n∑

k=1
zk = K, (6)

n∑
j=1

qjxjk ≤ (Q− qk)zk, ∀k ∈ K, (7)

K∑
k=1

xkj = 1, ∀j = 1, . . . , n, (8)

where

(follower) miny|x,z
n∑

i=1

n∑
j=1

cijyij, (9)

s.t.

yij ≤ xik, i, j = 1, . . . , n,

k = 1, . . . , K, (10)
n∑

i=1
yij = 1, j = 1, . . . , n, (11)

n∑
j=1

yij = 1, i = 1, . . . , n, (12)

∑
j∈V

∑
i∈V

yij ≤ |S| − 1, ∀S ⊂ V, S �= ∅. (13)

The objective function of the leader (5) minimizes the sum of the seed customers’
costs from depot, the sum of the costs of assigning customers to the routes, i.e. the
assignment of the customers to the seed customers and the routing cost. Constraints
(6) requires zk to be set equal to the number of vehicles. Constraints (7) are the vehi-
cle capacity constraints. Finally, constraints (8) state that every customer j must be on
exactly one route (vehicle). The objective function of the follower (9) describes the
routing cost of each vehicle based on the assignment by the leader. Constraints (10)
require that the TSP should be solved only for the group of customers that have been
assigned to the specific vehicle. Constraints (11) and (12) are degree constraints speci-
fying that each node is entering exactly once and is leaving it exactly once. Constraints
(13) are subtour elimination constraints.

J Glob Optim (2007) 38:555–580 561

4 Heuristic algorithm for the solution of the Bilevel vehicle routing problem

4.1 General description of hybrid genetic algorithm

The outline of the two level hybrid algorithm VRPBilevel (VRPB) for the solution of
the problem as stated in the previous section is presented in the following:

Initialization

First level problem

1. Create the initial population of NR individuals.
2. Evaluate the fitness of each individual.
3. Improve the fitness of each individual via a local search strategy.

Second level problem

1. For each individual of the initial population solve a TSP.
2. Initial computation of lower bounds.
3. Improve the solution of each individual using the ENS Method.

Main algorithm

1. Set the number of generations equal to zero.
2. Do while stopping criteria are not satisfied (the maximum number of genera-

tions has not been reached or the convergence of the genetic algorithm has not
occurred):
First level problem
2.1.1 Select the parents from the current population and choose via roulette

wheel selection the pairs for mating.
2.1.2 Apply the crossover operator between the two parents, first cloning the

common features of the two parents to the offspring and, then, completing
the offspring using a pure greedy procedure.

2.1.3 Improve each offspring by mutation operator and insert the resulting off-
spring to the new population.

2.1.4 Repeat the previous three steps until all parents are selected and mated.
Second level problem
2.2.1 For each individual of the initial population solve a TSP using

MPNS-GRASP algorithm.
2.2.2 Update lower bounds.
2.2.3 Improve the solution of each individual using ENS Strategy.
Population replacement
2.3 Rank the offsprings and the parents via their fitness function and the reaction

of the follower and select for the new population a number of individuals
equal to the initial population and proceed to the next generation.

3. enddo
4. Return the best individual.

4.2 The First Level Problem (Leader Problem)

4.2.1 Initial population

Usually in a genetic algorithm, there is a randomly generated initial population which
may or may not necessarily contain good candidate solutions. To avoid the latter

562 J Glob Optim (2007) 38:555–580

case, a modified version of the well known Greedy Randomized Adaptive Search
Algorithm (GRASP) is used to initialize the population.

The GRASP [27,37] is an iterative two phase search method which has gained
considerable popularity in combinatorial optimization. Each iteration consists of two
phases, a construction phase and a local search procedure. In the construction phase,
a randomized greedy function is used to build up an initial solution. This random-
ized technique provides a feasible solution within each iteration. This solution is then
exposed for improvement attempts in the local search phase. The final result is simply
the best solution found over all iterations.

That is, in the first phase, a randomized greedy technique provides feasible solutions
incorporating both greedy and random characteristics. This phase can be described
as a process which stepwise adds one element at a time to a partial (incomplete)
solution. The choice of the next element to be added is determined by ordering all
elements in a candidate list with respect to a greedy function. The heuristic is adaptive
because the benefits associated with every element are updated during each itera-
tion of the construction phase to reflect the changes brought on by the selection of
the previous element. The probabilistic component of a GRASP is characterized by
randomly choosing one of the best candidates in the list but not necessarily the top
candidate. The greedy algorithm is a simple, one pass, procedure for solving the gen-
eralized assignment problem. In the second phase, a local search is initialized from
these points, and the final result is simply the best solution found over all searches
(c.f. multi-start local search). The pseudocode of the algorithm is presented next:

algorithm GRASP
do while stopping criteria not satisfied

call GREEDY_RANDOM_SOLUTION(Solution)
call LOCAL_SEARCH(Solution)
if Solution is better than Best_Solution_Found then

Best_Solution_Found←− Solution
endif

enddo
return Best_Solution_Found

4.2.2 Greedy algorithm for the generalized assignment problem

In this method, an assignment of the customers to vehicles based on the solution of
the Generalized Assignment Problem (GAP) is realized and, then, a TSP is solved
for each assignment in order to find the sequence in which the vehicle should visit
the customers. Initially, the minimum number of vehicles is found that minimizes the
optimal GAP value, using the function “Selection of Seed Customers”. This value is
set equal to the minimum number of seed customers:

Selection of seed customers

TotDemand =
n∑

j=1
qj ! qj = demand of each customer

!TotDemand = the total demand of all customers
kmin = TotDemand

Q ! Q = capacity of the vehicles,

J Glob Optim (2007) 38:555–580 563

!kmin =minimum number of vehicles
k = 0
do j = 1, n

unused(j) = 0 ! unused shows if a customer is used in a route
enddo
do j = 1, n

if dj >
Q
2 then
k = k+ 1, seed(k) = j, route(k, 1) = i, unused(j) = 1

endif
enddo
if k < kmin then

call Make_Queue(V)
κ1 = 0
do while κ1 < D !D is the size of the RCL

call Select_Max_From_List((i, j), E)
!i = a customer and j = a seed customer
call Delete_Max_From_List((i, j), E)
Add i to RCL
κ1 = κ1 + 1

enddo
do while k < kmin

Select i randomly from RCL
k = k+ 1
seed(k) = i
route(k, 1) = i
unused(j) = 1

enddo
endif
return Initial Seed Customers

The function Make_Queue converts an array into a heap. The function which is
used to select the root of an increasing order heap is Select_Max_From_List, while
the function Delete_Max_From_List is used to remove the root of the heap and adjust
the list. The Restricted Candidate List (RCL) (see Sect. 4.3.1) is created taking into
account the distances of the non-assigned customers from the seed customers and the
depot. If the number of seed customers is less than the number of vehicles, the rest of
the seed customers are selected from the RCL. Then, one non-assigned customer is
selected randomly from the RCL. The assignment cost is calculated of the customer
in each route, checking if the two constraints are not violated, and, then, the customer
is assigned to the best feasible route using the function “Assignment of Customers”:

Assignment of customers
do m = 1, kmin

route_cap(m) = qseed(m) ! route_cap = the capacity of each route
route_length(m) = servicetime+ cost(m, 0)
!route_length = the length of each route customer 0 is the depot

call Make_Queue(V)
κ2 = 0
do while κ2 < D ! D = is the size of the RCL

564 J Glob Optim (2007) 38:555–580

call Select_Min_From_List((i,j),E)
! i = a customer, and j = a seed customer
call Delete_Min_From_List((i,j),E)
Add i to RCL1
κ2 = κ2 + 1

enddo
do while unused(j) = 1,∀j ∈ V

Select i randomly from RCL
Delete i from RCL
Order cost(i,seed)
! Order customers based on the distance from the seed customers
test = 0
do m = 1, kmin

if qi + route_cap(m) ≤ Q and
servicetime+ route_length(m) ≤MaxRoute then
!MaxRoute = the maximum route length restriction

Add i in route(m, i)
route_cap(m) = qi + route_cap(m)
route_length(m) = servicetime+ route_length(m)
unused(i) = 1
test = 1

endif
enddo
if test = 0 then

kmin = kmin + 1
seed(kmin) = j
route(kmin,1) = i
unused(i) = 1
route_cap(kmin) = qseed(kmin)

route_length(kmin) = servicetime+ cost(kmin, 0)
endif

enddo
return Assignment in vehicles

The function which is used to select the root of an increasing order heap is
Select_Min_From_List, while the function Delete_Min_From_List is used to remove
the root of the heap and adjust the list.

4.2.3 Calculation of fitness value and selection probability

The fitness of each individual is related to the assignment in each route. Since the
generalized assignment problem is a minimization problem, the objective function
value is inversely proportional to the fitness value of the solution. Therefore, high-
relative objective value corresponds with low-fitness value, and low-relative objective
corresponds with high-fitness value. A way to accomplish this is to find initially the
assignment in the population with the maximum cost and to subtract from this value
the cost of each of the other assignments. By doing this, the higher fitness value cor-
responds to an assignment with the shorter cost. Since the probability of selecting an

J Glob Optim (2007) 38:555–580 565

individual for mating is related to its fitness and since the individual with the worst
assignment has fitness equal to zero, it will never be selected for mating. Therefore
in order to avoid its total exclusion the fitness of all individuals in this population
is incremented by one resulting thus in the worst individual having a fitness of one.
The parents are selected for mating via proportional selection, also known as roulette
wheel selection [28].

4.2.4 Crossover

We propose a complex crossover operator, the dog breed crossover, which initially
identifies the common characteristics of the parent individuals and, then, inherits
them to the offsprings. Subsequently, a greedy procedure is applied to each offspring
in order to complete the assignment.

The common characteristics are used in the offsprings because if two or more
solutions of a combinatorial problem have common characteristics there is a high-
probability that these, also, belong to the optimal solution of the problem. Moreover,
the inheritance of good characteristics from highly adapted parents may produce even
fitter offspring.

4.2.5 Mutation

Mutation operators for the GAP are synonymous to local exchange heuristics. The
most known of these heuristics are the shift algorithm and swap algorithm, where
both of them are used in this algorithm. In the first (shift algorithm), S′ is obtained
by changing the assignment of one customer from the initial solution S. In the second
(swap algorithm), S′ is obtained by exchanging the assignment of two customers from
the initial solution S. These are described by the following pseudocode:

Mutation phase for GAP
! Shift Algorithm
do while no further improvement

Select i for route r1
Select the candidate for inclusion route (different from j)
if Capacity and Max Route constraints not violated then

if Cost_new_assignment < Cost_old_assignment then
Change the route of i
Cost_old_assignment = Cost_new_assignment

endif
endif

enddo
! Swap Algorithm
do while no further improvement

Select i for route r1
Select j for route r2
if Capacity and Max Route constraints not violated then

if Cost_new_assignment < Cost_old_assignment then
Exchange customers i and j
Cost_old_assignment = Cost_new_assignment

endif

566 J Glob Optim (2007) 38:555–580

endif
enddo
return Assignment in vehicles

4.3 The second level problem (follower problem)

4.3.1 Pure greedy algorithm for the TSP

In the follower problem, the modified GRASP algorithm is also applied for the solu-
tion of the TSP. Initially, a Restricted Candidate List (RCL), of all the edges of a given
graph G=(V, E) is created by ordering all the edges from the smallest to the largest
cost using a heap data structure, as it was presented above. From this list, the first D
edges are selected in order to form the RCL. This type of RCL is called cardinality
based RCL. The candidate edge for inclusion in the tour is selected randomly from
the RCL using a random number generator. Finally, the RCL is readjusted in every
iteration by replacing the edge which has been included in the tour by another edge
that does not belong to the RCL, namely the (D+m)th edge, where m is the number
of the current iteration. Once an element has been chosen for inclusion in the tour, a
tour construction heuristic is applied in order to insert it in the partial tour.

The tour construction heuristic is a pure greedy algorithm. Initially, the degree
of all the nodes is set equal to zero. Then, one edge at a time is selected randomly
from the RCL. Each edge (i, j) is inserted in the partial route taking into account that
the degree of i and j should be less than or equal to 2 and the new edge should not
complete a route with fewer than n vertices. In this algorithm, a number of paths are
created which are finally joined to a single route [25] . A candidate edge is added to
the solution if and only if it does not create a subtour that excludes a node that should
belong to the tour.

In the following, a pseudocode of the pure greedy algorithm is presented:

Pure greedy algorithm
S = ∅ ! S is the current solution
Initial values for degree(i1) = 0 ∀ i1
call Make_Queue(E)
call Init_Set(parent, number of nodes)
κ = 0
do while κ < D ! D = the size of the RCL

call Select_Min_From_List((i,j),E)
call Delete_Min_From_List((i,j),E)
Add l = (i, j) to RCL
κ = κ + 1

enddo
κ1 = 0
do while degree(i1) �= 2, ∀i1 = 1, . . . n

Select l = (i, j) randomly from RCL
Delete l = (i, j) from RCL
if degree(i) �= 2 and degree(j) �= 2 then

if κ1 < n− 1 then
root1 = Collapsing_Find_Set(i,parent)

J Glob Optim (2007) 38:555–580 567

root2 = Collapsing_Find_Set(j,parent)
if root1 �= root2 then

call Merge_Paths((i, j), S)
call Union(root1,root2,parent)
degree(i) = degree(i)+ 1
degree(j) = degree(j)+ 1
κ1 = κ1 + 1

endif
else

call Merge_Paths((i, j), S)
degree(i) = degree(i)+ 1
degree(j) = degree(j)+ 1
κ1 = κ1 + 1

endif
endif
Add the (D+m)th edge from list to the RCL

enddo
return S

The function Init_Set initializes disjoint sets, where each set has one element
(node) and the total number of sets is equal to the number of nodes. The function
Collapsing_Find_Set returns the root of the set to which the element belongs. At the
same time, this function collapses the tree in order to reduce the longest path in the
tree, giving, thus, a better complexity for a sequence of searches. The function Union
joins two disjoint sets with roots 1 and 2, where roots 1 and 2 are values returned from
the function Collapsing_Find_Set, by making the smallest set a subtree of the other
set. Finally, the function Merge_Paths merges the two different paths if roots 1 and 2
are not the same.

4.3.2 Calculation of lower bounds

For a given set of nodes, an 1-tree ([19]) is a tree connecting the node set {2, 3, . . . , n},
and having in addition two distinct arcs connecting to node 1. Therefore, an 1-tree is
a connected graph with one cycle. The weight of the 1-tree is the sum of the cost of all
its arcs. A minimum weight tree can be constructed by finding a minimum spanning
tree for the node set {2, 3, . . . , n}, and by adding to it the two arcs of minimum cost
incident to node 1. Any TSP can be described as an 1-tree tour in which each node
has degree 2. Thus, the minimum weight 1-tree implies a lower bound (LBD) on the
length of the optimal traveling salesman tour.

The TSP can be formulated as follows:

(TSP) min cost(T)

where {
T is an 1-tree with root node 1
degree(i) = 2 ∀ node i except the root.

(14)

The 1-tree Lagrangian Relaxation Subproblem (SUB) is obtained by relaxing the
degree constraints, that is,

568 J Glob Optim (2007) 38:555–580

SUB(λi) = min cost(T)−
∑

i∈N−{1}
(degree(i)− 2)λi, (15)

where T is an 1-tree with root node 1 and the λi, i �= 1, are the Lagrangian multipliers.
The optimal values of the λi for all nodes i �= 1 are calculated using the subgradient
algorithm:

λ(κ+1)
i = λ(κ)i + α(κ)

UBD(κ) − LBD(κ)

||g||2 (degree(i)− 2), (16)

where g = [g(i)]i∈V−{1}, with g(i) = degree(i) − 2 denotes the subgradient, κ is the
iteration counter, UBD and LBD are upper and lower bounds in the optimal TSP
objective value, and α is a parameter in (0,2). The following pseudocode describes the
approach.

Calculation of lower bounds
κ = 0
Initial values for λ(κ)i = 0
do while (Max number of iterations reached or e ≤ threshold value)

Solve SUB(λ(κ)i)

The cost of the SUB is a new lower bound for the TSP (NLBD)
if (degree(i) = 2) ∀ node then

The cost of the SUB is an upper bound
The algorithm stops with the optimal solution to
the Lagrangian dual problem

else
Adjust the solution with Christofides’ algorithm [22]
The cost produced by Christofides’ algorithm is
a new upper bound (NUBD)
Improve NUBD using the 2-opt algorithm

endif
if NUBD < UBD then

UBD = NUBD
endif
if NLBD > LBD then

LBD = NLBD
endif
κ = κ + 1
λ
(κ+1)
i = λ(κ)i + α(κ) UBD(κ)−LBD(κ)

||g||2 (degree(i)− 2)

e = UBD−LBD
UBD 100%

enddo

In each iteration of the algorithm, a minimum weight 1-tree is calculated and if the
solution is feasible, i.e. the degree of all nodes including the root node is equal to 2,
the algorithm stops. If a minimum weight 1-tree is a tour, with respect to non-modified

J Glob Optim (2007) 38:555–580 569

costs (i.e. λi = 0), then it is an optimal traveling salesman tour. When the solution is
not feasible the cost of the 1-tree constitutes a lower bound and an effort is made to
convert it into a feasible one with the use of the Christofides’ heuristic [22]. In the
resulting tour, a 2-opt heuristic is applied in order to improve it. The cost of this tour
yields an upper bound. As it is desirable to have the lower and the upper bounds as
good as possible, the subroutines of the main phase of the algorithm are called every
κ1, for instance κ1 = 10, iterations. At the end of each iteration, the new cost of the
1-tree is compared to the current lower bound and if the cost is higher, then the lower
bound is updated. Similarly, the upper bound is updated only if the current value is
lower than the current upper bound. Thus, a sequence of lower and another of upper
bounds are created which tend toward each other.

4.3.3 Expanding neighborhood search strategy for the TSP

The ENS has been proven very efficient for the solution of the TSP [27]. ENS is
based on a method called Cycle Restricted Local Search Moves (CRLSM) and, in
addition, it has a number of local search phases. In this implementation, the local
search strategies used are 2-opt and 3-opt.

In the CRLSM strategy, the computational time is decreased significantly com-
pared to other heuristic and metaheuristic algorithms because all the edges that are
not going to improve the solution are excluded from the search procedure. This hap-
pens by restricting the search into circles around the candidate for deletion edges,
i.e. the search is restricted to edges with one of their end-nodes inside a circle with
radius length at most equal to the sum of the costs (lengths) of the two candidates for
deletion edges.

In the following, a description of the CRLSM Strategy for a 2-opt trial move is pre-
sented. In this case, there are three possibilities based on the costs of the candidates
for deletion and inclusion edges:

(1) If both new edges increase in cost, a 2-opt trial move can not reduce the cost of
the tour (e.g., in Fig. 1, for both new edges the costs C2 and C4 are greater than
the costs B2 and A of both old edges).

(2) If one of the two new edges has cost greater than the sum of the costs of the two
old edges, a 2-opt trial move, again, can not reduce the cost of the tour (e.g. in
Fig. 1, the cost of the new edge C3 is greater than the sum of the costs A+B3 of
the old edges).

(3) The only case for which a 2-opt trial move can reduce the cost of the tour is when
at least one new edge has cost less than the cost of one of the two old edges (e.g.,
in Fig. 1, the cost C1 of the new edge is less than the cost of the old edge A) and
the other edge has cost less than the sum of the costs of the two old edges (e.g.,
C5 < A+ B1 in Fig. 1).

The ability of the algorithm to change between different local search strategies is
another innovation of the proposed algorithm and overcomes the third obstacle. The
idea of using a larger neighborhood to escape from a local minimum to a better one,
had been proposed initially by Garfinkel and Nemhauser [12] and recently by Hansen
and Mladenovic [18]. Garfinkel and Nemhauser proposed a very simple way to use a
larger neighborhood. In general if with the use of one neighborhood a local optimum
was found then a larger neighborhood is used in an attempt to escape from the local

570 J Glob Optim (2007) 38:555–580

A

B3

B1

B2
C2

C3

C4

C5

C1

Fig. 1 Cycle restricted local search moves method

optimum. On the other hand, Hansen and Mladenovic proposed a more systematical
method to change between different neighborhoods, called Variable Neighborhood
Search.

The ENS Method starts with one prespecified length of the radius of the circle of
the CRLSM strategy. Inside this circle a number of different local search strategies
are applied until all the possible trial moves have been explored and the solution can
not further be improved in this neighborhood. Subsequently, the length of the radius
of the circle is increased and, again, the same procedure is repeated until the stopping
criterion is activated. The main differences of ENS from the other two methods is
the use of the CRLSM which restricts the search in circles around the candidates for
deletion edges, the stopping criterion that is based on lower bounds to the optimal
objective value, and, finally, the more sophisticated way that the local search strategy
can be changed inside the circles.

The idea of searching inside a radius of the circle of the neighborhood search,
the CRLSM Strategy, is the most innovative feature of the proposed algorithm. In
ENS strategy, another innovative feature is the fact that the size of the neighborhood
is expanded in each external iteration. Each different length of the neighborhood
constitutes an external iteration. Initially, the size of the neighborhood, s, is defined
based on the CRLSM strategy, for example s = A/2, where A is the cost of one of the
candidates for deletion edges. For the selected size of the neighborhood, a number
of different local search strategies are applied until all the possible trial moves have
been explored and the solution cannot further be improved in this neighborhood. The
local search strategies are changed based on two conditions, first if the current local
search strategy finds a local optimum and second if the quality of the current solution
remains greater than the threshold number b1 for a number of internal iterations. Sub-
sequently, the quality of the current solution is compared with the current Lagrangian
lower bound. If the quality of the solution is less than the threshold number e the
algorithm stops, otherwise the neighborhood is expanded by increasing the length of
the radius of the CRLSM strategy s by a percentage θ (e.g. θ = 10%), the Lagrangian
lower bound is updated and the algorithm continues. When the length of the radius

J Glob Optim (2007) 38:555–580 571

of the CRLSM strategy is equal to A, the length continues to increase until the length
becomes equal to A + B, where B is the length of the other candidate for deletion
edge. If the length of the radius of the CRLSM strategy is equal to A + B, and no
stopping criterion has been already activated, then the algorithm terminates with the
current solution. In Fig. 2, the ENS Method is presented. The following pseudocode
describes this approach.

Expanding neighborhood search
s = A/2
m = 0 !m =index for the local search methods
do while (ω > e or s < A+ B) !ω = the quality of the solution

m = 1
Call first local search strategy
if ω < e then

STOP with the current solution
else

do while (m < M)
! M = the number of local search strategy

if ω < b1 or a local optimum is found then
Change local search method
m = m+ 1
if ω < e then

STOP with the current solution
endif

endif
enddo

endif
s = 1.1 ∗ s
Update lower bounds, b1 and e

enddo

A

B

B

A/2
A

A+B

>A+B no possible
improvemnt in cost

Fig. 2 Expanding neighborhood search

572 J Glob Optim (2007) 38:555–580

The two local search algorithms that are used in ENS strategy are 2-opt and 3-opt.
First, the neighborhood function is defined as exchanging two edges of the current
solution with two other edges. This procedure is known as 2-opt procedure and was
introduced by Lin for the TSP [24]. Note that there is only one way to reconnect
the paths. A restricted version of the approach is applied (Fig. 3). The following
pseudocode describes this approach:

2-opt Strategy
Given S !S is the current solution
call Make_Queue(E1) !E1 = the set of arcs of the initial solution
do while No further improvement in the solution can be achieved

call Select_Max_From_List((i, j), E1)
do for all possible (i1, j1) ! (i1, j1) = an edge of the current tour

S′ = S \ (i, j) \ (i1, j1) ∪ (i, i1) ∪ (j, j1)
call Calc_Cost(S′, costS′)
if (costS′ < costS) then

Update the solution S←− S′
costS = costS′
call Re_Arrange_List(S)

endif
enddo

enddo
return S

The function Select_Max_From_List is used for selecting the root of the decreasing
ordering heap. The function Re_Arrange_List(S) calls the functions Delete_From_List

i

j

l

k

i l l

k j

i

k j

A) Example of 2-opt method

i i
ij j j

l l l

k
k

knnn

m
m

B) Example of 3-opt method

m

Fig. 3 Example of 2-opt and 3-opt

J Glob Optim (2007) 38:555–580 573

and Add_to_List, where the function Delete_From_List is used for removing the
deleted edges of the heap and adjusting the list and the function Add_to_List is used
for adding the selected edges in the heap and adjusting, again, the heap. The function
Calc_Cost calculates the cost of the candidate tour.

For example, the function Re_Arrange_List(S) for the 2-opt strategy works as
follows:

Re_Arrange_List(S)
call Delete_from_List(i, j)
call Delete_from_List(i1, j1)
call Add_to_List(i, i1)
call Add_to_List(j, j1)

The 3-opt heuristic (Fig. 3) is quite similar to the 2-opt. However, because it uses a
larger neighborhood, it introduces more flexibility in modifying the current tour. The
procedure is quite similar with 2-opt except that in the 3-opt strategy two edges are
candidate for deletion from the tour.

4.4 Population replacement and termination process

During the course of evolution, natural populations evolve according to the principles
of natural selection and survival of the fittest. Individuals who are more succesfull in
adapting to their environment will have a better chance of surviving and reproduc-
ing, while individuals which are less fit have a higher probability of being eliminated.
Initially, all the individuals of the population are sorted w.r.t. their fitness values and
the solution gave the reaction of the follower (k is equal with the initial population).
Subsequently, the k individuals, for example k = 100, with the best reaction of the fol-
lower will replace the old population. In the proposed algorithm, the algorithm stops
using either the maximum number of generations or if there is genetic convergence,
i.e. the individuals of the current population are identical.

5 Computational results for the vehicle routing problem

The VRPB algorithm was implemented in Fortran 90 and were compiled using the La-
hey f95 compiler on a Pentium III at 667 MHz, running Suse Linux 8.2. The algorithms
was tested on two sets of benchmark problems. The 14 benchmark problems proposed
by Christofides and the 20 large scale vehicle routing problems proposed by Golden.
Each instance of the first set contains between 51 and 200 nodes including the depot.
Each problem includes capacity constraints while the problems 6–10, 13, and 14 have,
also, maximum route length restrictions and non-zero service times. The second set
of instances contains between 200 and 483 nodes including the depot. Each problem
instance includes capacity constraints while the first eight also have maximum route
length restrictions but with zero service times.

The efficiency of the Bilevel Genetic—GRASP—ENS (VRPB) algorithm is also
measured by the quality of the produced solutions. The quality is given in terms of
the relative deviation from the best known solution, that is ω = 100(cVRPBilevel−copt)

copt
%,

where cVRPBilevel denotes the cost of the solution found by VRPBilevel and copt is
the cost of the best known solution. It can be seen from Tables 1 and 2, that the

574 J Glob Optim (2007) 38:555–580

VRPBilevel algorithm, in half of the instances proposed by Christofides has reached
the best known solution. For the rest instances proposed by Christofides the quality of
the solution is between 0.64 and 1.31% with average quality 0.479%. For the 20 large
scale vehicle routing problems, proposed by Golden, in which the algorithm was, also,
tested, the quality of the solution is between 0.33 and 1.63%, with average quality
0.826%. These results denote the efficiency of the proposed algorithm.

The results obtained by the proposed algorithm are also compared to the results of
the most efficient algorithms that have ever been presented for the VRP. The approx-
imation algorithms for the VRP are classified into two main categories, heuristics, and
metaheuristics algorithms. From these two categories, the most known and the most
efficient were chosen for the comparisons. The most classical heuristics algorithms
are not competitive with the metaheuristic algorithms but they are included in the
comparisons for reasons of completeness.

The heuristic algorithms that are used in the comparisons with the proposed algo-
rithms are the Clarke and Wright algorithm, the 1-petal and the 2-petal algorithms,
the Fisher and Jaikumar algorithm, the Wark and Holt algorithm, the B-SL Gavish
algorithm, the Christofides–Mignozzi–Toth algorithm, the Desrochers algorithm, the
Sweep algorithm and, finally, the Mole and Jameson algorithm.

Metaheuristic algorithms are classified in categories based on the used strategy. In
these comparisons algorithms that are based on Neural Networks are not included,
because their results are not competitive with the other metaheuristic algorithms.
Tabu Search strategy is the most widely used technique for this problem and a num-
ber of researchers have proposed very efficient variants of the standard Tabu Search
algorithm (Tailard, TABUROUTE, Osman Tabu Search, Xu Kelly, Granular Tabu
Search, UTSA, Barbarosoglu, PTC, SEC). Very interesting and efficient algorithms
based on the concept of Adaptive Memory, according to which a set of high-quality
VRP solutions (elite solutions) is stored and, then, replaced from better solutions
through the solution process, have been proposed (RT, BoneRoute, SEPAS). Sim-
ulated annealing (Osman Simulated Annealing) and threshold accepting algorithms
(BATA, LBTA) are also applied efficiently in the VRP. Ant Colony Optimization
for VRP have been proved to be very efficient and competitive with the other meta-

Table 1 Results of VRPBilevel in Christofides benchmark instances

Nodes Capacity Max. Service VRP-Bilevel Optimum Quality CPU
tour length time (%) (min)

1 51 160 ∞ 0 524.61 524.61 0.00 0.02
2 76 140 ∞ 0 835.26 835.26 0.00 0.23
3 101 200 ∞ 0 826.14 826.14 0.00 0.29
4 151 200 ∞ 0 1028.42 1028.42 0.00 0.83
5 200 200 ∞ 0 1306.17 1291.45 1.14 2.30
6 51 160 200 10 555.43 555.43 0.00 0.02
7 76 140 160 10 909.68 909.68 0.00 0.27
8 101 200 230 10 865.94 865.94 0.00 0.84
9 151 200 200 10 1177.76 1162.55 1.31 1.48
10 200 200 200 10 1404.75 1395.85 0.64 3.03
11 121 200 ∞ 0 1051.73 1042.11 0.92 0.20
12 101 200 ∞ 0 825.57 819.56 0.73 0.34
13 121 200 720 50 1555.39 1541.14 0.92 0.42
14 101 200 1040 90 875.35 866.37 1.03 0.31

J Glob Optim (2007) 38:555–580 575

Table 2 Results of VRPBilevel in large scale vehicle routing Instances

Nodes Capacity Max. Service VRP-Bilevel Optimum Quality CPU
tour length time (%) (min)

1 240 550 650 0 5702.48 5644.02 1.03 1.48
2 320 700 900 0 8476.64 8447.92 0.34 1.77
3 400 900 1,200 0 11117.38 11036.22 0.74 5.08
4 480 1000 1,600 0 13706.78 13624.53 0.60 6.18
5 200 900 1,800 0 6482.67 6460.98 0.33 1.02
6 280 900 1,500 0 8501.15 8412.88 1.05 1.19
7 360 900 1,300 0 10254.35 10195.59 0.57 2.03
8 440 900 1,200 0 11957.15 11828.78 1.08 5.28
9 255 1,000 ∞ 0 589.12 585.43 0.63 1.07
10 323 1,000 ∞ 0 749.15 743.17 0.35 2.30
11 399 1,000 ∞ 0 934.24 923.17 1.20 2.75
12 483 1,000 ∞ 0 1138.92 1128.03 0.97 6.8
13 252 1,000 ∞ 0 868.80 865.01 0.43 2.74
14 320 1,000 ∞ 0 1096.18 1083.65 0.93 1.95
15 396 1,000 ∞ 0 1367.25 1351.35 0.98 6.22
16 480 1,000 ∞ 0 1645.24 1634.74 0.64 9.59
17 240 200 ∞ 0 711.07 708.74 0.33 2.15
18 300 200 ∞ 0 1015.12 998.83 1.63 2.16
19 360 200 ∞ 0 1389.15 1367.2 1.61 2.62
20 420 200 ∞ 0 1842.17 1822.94 1.06 4.36

heuristics (RSD, D-Ants, BHS) just as genetic algorithms (Prins, BAGA, HGA). In
Tables 3 and 4, the ranking of all algorithms used for the comparisons and of the
proposed algorithms is presented.

The average quality of the solutions of all instances obtained by the VRPBilevel
algorithm for the set of classic benchmark instances of Christofides is equal to 0.479%
for the VRPBilevel. The proposed algorithm is ranked among 36 algorithms in the
tenth place. The VRPBilevel which is an algorithm based on a different modeling of
the VRP using discrete bilevel optimization, is very fast and efficient and has all the
good characteristics of the Hyb-GEN [28] as they are both genetic algorithms which
use the same methods (ENS, MPNS-GRASP) in different phases of the algorithms.
Thus, the VRPBilevel can be viewed as the beginning of a new approach for the
solution of this kind of problems. For the large scale vehicle routing problems, the
average quality of the solutions is equal to 0.826% for the VRPBilevel. The proposed
algorithm is ranked among 16 algorithms in the sixth place the VRPBilevel. These
results confirm our conclusions of the previous analysis.

It should be noted that a fair comparison in terms of computational efficiency is
difficult because the computational speed is affected, mainly, from the compiler and
the hardware that are used. Despite this fact, the average CPU time (in minutes) of
the metaheuristic algorithms of the previous comparisons is presented in Tables 5 and
6 as such a comparison is necessary in order to show the computational efficiency of
our algorithm. It can be seen from these Tables that VRPBilevel is the faster of all
metaheuristic algorithms in the first set of instances and it is ranked in the second
place among all algorithms in the large scale vehicle routing instances.

576 J Glob Optim (2007) 38:555–580

Table 3 Comparison of
various heuristics and
metaheuristics algorithms with
VRP Bilevel in Christofides
Instances

Rank Algorithm Quality

1 RT [38] 0.00
2 Tailard [39] 0.051
3 best-Prins [32] 0.085
4 Best-SEPAS [40] 0.182
5 St-SEPAS [40] 0.195
6 best-TABUROUTE [13] 0.198
7 BoneRoute [43] 0.226
8 stand-Prins [32] 0.235
9 RSD [33] 0.383
10 VRP-Bilevel 0.479
11 D-Ants [34] 0.481
12 stand-HGA [3] 0.485
13 LBTA [42] 0.498
14 BAGA [1] 0.504
15 BATA [41] 0.525
16 PTC [36] 0.549
17 Barbarosoglu [2] 0.57
18 Wark Holt [21] 0.635
19 Granular Tabu Search (GTS) [46] 0.64
20 UTSA [8] 0.689
21 st-TABUROUTE [13] 0.863
22 Osman Tabu Search [31] 1.011
23 BHS [6] 1.511
24 SEC [35] 1.539
25 Xu and Kelly [47] 1.718
26 Osman Simulated Annealing [31] 2.105
27 2-Petal [21] 2.430
28 Fisher and Jaikumar [10] 2.659
29 B-SL [21] 3.295
30 Gavish [45] 3.415
31 Christofides-Mignozzi-Toth [7] 5.055
32 1-Petal [21] 5.937
33 CW [21] 6.724
34 Desrochers [45] 6.922
35 Sweep [21] 7.177
36 Mole–Jameson [7] 10.906

6 Conclusions

In this paper, a new formulation for the VRP is proposed based on bilevel program-
ing. This formulation separates the problem in two different problems, the generalized
assignment problem for the assignment of the customers in vehicles, and the TSP for
the routing of the vehicles. Based on this formulation, a bilevel genetic algorithm is
proposed. In the first level of the proposed algorithm, a genetic algorithm is used for
calculating the population of the most promising assignments of customers to vehi-
cles. In the second level of the proposed algorithm, a TSP is solved, independently for
each member of the population and for each assignment to vehicles. The algorithm
was applied in two set of benchmark instances and gave very satisfactory results in
both sets (average quality less than 1%). More specifically in the set with the classic
benchmark instances, proposed by Christofides, the average quality is 0.479% and in
the second set of benchmark instances, the 20 large scale vehicle routing problem,
is 0.826% and, so, the algorithm is ranked in the tenth place among 36 most known

J Glob Optim (2007) 38:555–580 577

Table 4 Comparison of
various heuristics and
metaheuristics algorithms with
VRP Bilevel in Golden
Instances

Rank Algorithm Quality

1 best-D-Ants [34] 0.201
2 stand-SEPAS [40] 0.203
3 best-Prins [32] 0.515
4 BoneRoute [43] 0.529
5 Variable Record to Record Travel (VRTR) [23] 0.66
6 VRP-Bilevel 0.826
7 aver-D-Ants [34] 0.837
8 st-Prins [32] 0.927
9 LBTA [42] 1.545
10 BATA [41] 1.576
11 GTS [46] 2.473
12 LS [9] 3.123
13 Record To Record Travel (RTR) [17] 3.511
14 LT [9] 4.709
15 Xu-Kelly [47] 8.119
16 Golden [17] 12.487

Table 5 Running times of
various heuristics and
metaheuristics algorithms in
Christofides Instances

Algorithm CPU (min) Computer used

VRP-Bilevel 0.76 Pentium III 667 MHz
SEC [35] 2.32 HP 9000/712
D-Ants [34] 3.28 Pentium 900 MHz
GTS [46] 3.84 Pentium 200 MHz
best-Prins [32] 5.2 Pentium 1,000 MHz
stand-Prins [32] 5.2 Pentium 1,000 MHz
St-SEPAS [40] 5.6 Pentium II 400 MHz
BoneRoute [43] 6.0 Pentium II 400 MHz
BATA [41] 6.5 Pentium 233 MHz
Best-SEPAS [40] 6.6 Pentium II 400 MHz
LBTA [42] 6.8 Pentium 233 MHz
RSD [33] 7.7 Pentium 900 MHz
UTSA [8] 13.8 Sun UltraSparc 10
BHS [6] 18.4 Pentium 100 MHz
stand-HGA [3] 21.3 Pentium 400 MHz
PTC [36] 24.65 4 Sun Sparc
Osman TS [31] 26.1 VAX 8600
BAGA [1] 29.1 Pentium 266 MHz
st-TABUROUTE [13] 46.8 Silicon Graphics 36 MHz
Barbarosoglu [2] 56.2 Pentium 133 MHz
Xu and Kelly [47] 131.6 DEC ALPHA Workstation
Osman SA [31] 151.36 VAX 8600

algorithms in the literature in the first set and in the sixth place among sixteen algo-
rithms in the second set. The computational time of the proposed algorithm is very
small and compared to other metaheuristic algorithms is ranked in the first place for
the first set of instances and in the second place for the large scale vehicle routing
instances.

578 J Glob Optim (2007) 38:555–580

Table 6 Running times of
various heuristics and
metaheuristics algorithms in
golden instances

Algorithm CPU (min) Computer used

VRTR [23] 0.97 Athlon 1 GHz
VRP-Bilevel 3.44 Pentium III 667 MHz
GTS [46] 17.55 Pentium 200 MHz
LBTA [42] 17.81 Pentium 233 MHz
BATA [41] 18.41 Pentium 233 MHz
RTR [17] 37.15 Pentium 100 MHz
BoneRoute [43] 42.05 Pentium 400 MHz
stand-SEPAS [40] 45.48 Pentium II 400 MHz
aver-D-Ants [34] 49.33 Pentium 400 MHz
LS [9] 49.89 not mentioned
LT [9] 60.88 not mentioned
st-Prins [32] 66.6 Pentium 1,000 MHz
Xu and Kelly [47] 1825.59 DEC ALPHA Workstation

References

1. Baker, B.M., Ayechew, M.A.: A genetic algorithm for the vehicle routing problem. Comput. Oper.
Res. 30(5), 787–800 (2003)

2. Barbarosoglu, G., Ozgur, D.: A tabu search algorithm for the vehicle routing problem. Comput.
Oper. Res. 26, 255–270 (1999)

3. Berger, J., Mohamed, B.: A hybrid genetic algorithm for the capacitated vehicle routing problem.
In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 646–656. Chicago
(2003)

4. Bodin, L., Golden, B.: Classification in vehicle routing and scheduling. Networks 11, 97–108 (1981)
5. Bodin, L., Golden, B., Assad, A., Ball, M.: The state of the art in the routing and scheduling of

vehicles and crews. Comput. and Oper. Res. 10, 63–212 (1983)
6. Bullnheimer, B., Hartl, P.F., Strauss, C.: An improved ant system algorithm for the vehicle routing

problem. Ann. Oper. Res. 89, 319–328 (1999)
7. Christofides, N.: Vehicle routing. In: Lawer, E.L., Lenstra, J.K., Rinnoy Kan, A.H.G., Shmoys, D.B.

(ed.) The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization,
pp. 431–448. New York (1985)

8. Cordeau, J.F., Gendreau, M., Laporte, G., Potvin, J.Y., Semet, F.: A guide to vehicle routing
heuristics. J. Oper. Res. Soc. 53, 512–522 (2002)

9. Coy, S.P., Golden, B.L., Runger, G.C., Wasil, E.A.: Using experimental design to effective param-
eter settings for heuristics. J. Heuristics 7(1), 77–97 (2001)

10. Fisher, M.L., Jaikumar, R.: A generalized assignment heuristic for vehicle routing. In: Golden, B.,
Bodin, L.(ed.) Proceedings of the International Workshop on Current and Future Directions in
the Routing and Scheduling of Vehicles and Crews, New York (1979) Wiley, pp. 109–124.

11. Fisher, M.L.: Vehicle routing. In: Ball, M.O., Magnanti, T.L., Momma, C.L., Nemhauser, G.L.
(eds.) Network Routing, Handbooks in Operations Research and Management Science, vol. 8,
pp. 1–33 (1995)

12. Garfinkel, R., Nemhauser, G.: Integer Programming. J Wiley, New York (1972)
13. Gendreau, M., Hertz, A., Laporte, G.: A tabu search heuristic for the vehicle routing problem.

Manage. Sci. 40, 1276–1290 (1994)
14. Gendreau, M., Laporte, G., Potvin, J-Y.: Vehicle routing: modern heuristics. In: Aarts, E.H.L.,

Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, (1997) Wiley, Chichester,
pp. 311–336.

15. Gendreau, M., Laporte, G., Potvin, J.Y.: Metaheuristics for the capacitated VRP. In: Toth, P.,
Vigo. D. The Vehicle Routing Problem, Monographs on Discrete Mathematics and Applications,
Philadelphia, MA SIAM, pp.129–154.

16. Golden, B.L., Assad, A.A.: Vehicle Routing: Methods and Studies. North Holland, Amsterdam
(1988)

17. Golden, B.L., Wasil, E.A., Kelly, J.P., Chao, I.M.: The impact of metaheuristics on solving the
vehicle routing problem: algorithms, problem sets, and computational results. In: Crainic, T.G.,

J Glob Optim (2007) 38:555–580 579

Laporte, G. (eds.) Fleet Management and Logistics, pp. 33–56. Kluwer Academic Publishers,
Boston (1998)

18. Hansen, P., Mladenovic, N.: Variable neighborhood search: principles and applications. Eur.
J. Oper. Res. 130, 449–467 (2001)

19. Held, M., Karp, R.M.: The traveling salesman problem and minimum spanning trees. Oper. Res.
18, 1138–1162 (1970)

20. Laporte, G., Gendreau, M., Potvin, J.-Y., Semet, F.: Classical and modern heuristics for the vehicle
routing problem. Int. Trans. Oper. Res. 7, 285–300 (2000)

21. Laporte, G., Semet, F.: Classical heuristics for the capacitated VRP. In: Toth, P., Vigo, D. (eds.) The
Vehicle Routing Problem, Monographs on Discrete Mathematics and Applications, pp. 109–128.
SIAM. Philadelphia, PA (2002)

22. Lawer, E.L., Lenstra, J.K., Rinnoy Kan, A.H.G., Shmoys, D.B.: The Traveling Salesman Problem:
A Guided Tour of Combinatorial Optimization. Wiley, New York (1985)

23. Li, F., Golden, B., Wasil, E.: Very large-scale vehicle routing: new test problems, algorithms and
results, Comput. Oper. Res. 32(5), 1165–1179 (2005)

24. Lin, S.: Computer solutions of the traveling salesman problem. Bell Sys. Tech. J. 44, 2245–2269
(1965)

25. Marinakis, Y.: Vehicle Routing in Distribution Problems. Ph. D. Thesis. Department of Production
Engineering and Management, Technical University of Crete, Chania, Greece (2005)

26. Marinakis, Y., Migdalas, A.: Heuristic Solutions of Vehicle Routing Problems in Supply Chain
Management. In: Pardalos, P.M., Migdalas, A., Burkard, R. (eds.) Combinatorial and Global
Optimization, pp. 205–236. World Scientific Publishing Co, Singapore, (2002)

27. Marinakis, Y., Migdalas, A., Pardalos P.M.: Expanding neighborhood GRASP for the traveling
salesman problem. Comput. Optim. Appl. 32, 231–257 (2005)

28. Marinakis, Y., Migdalas, A., Pardalos, P.M.: A Hybrid Genetic-GRASP algortihm using langran-
gean relaxation for the traveling salesman problem. J. Comb. Optim. 10, 311–326 (2005)

29. Marinakis, Y., Migdalas, A., Pardalos, P.M.: Multiple phase neighborhood search GRASP based
on Lagrangian relaxation and random backtracking Lin–Kernighan for the traveling salesman
problem (submitted in Optimization Methods and Software (2006))

30. Migdalas, A., Pardalos, P.: Nonlinear bilevel problems with convex second level problem—Heu-
ristics and descent methods In: Du, D. -Z. et al., (eds.) Operations Research and its Application,
pp. 194–204. World Scientific, Singapore (1995)

31. Osman, I.H.: Metastrategy simulated annealing and tabu search algorithms for combinatorial
optimization problems. Ann. Oper. Res. 41, 421–451 (1993)

32. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Comput.
Oper. Res. 31, 1985–2002 (2004)

33. Reimann, M., Stummer, M., Doerner, K.: A savings based ant system for the vehicle routing
problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, 1317–1326.
New York (2002)

34. Reimann, M., Doerner, K., Hartl, R.F.: D-Ants: savings based ants divide and conquer the vehicle
routing problem. Comput. Oper. Res. 31(4), 563–591 (2004)

35. Rego, C.: A subpath ejection method for the vehicle routing problem. Manage Sci. 44, 1447–1459
(1998)

36. Rego, C.: Node-ejection chains for the vehicle routing problem: sequential and parallel algorithms.
Parallel Comput. 27(3), 201–222 (2001)

37. Resende, M. G. C., Ribeiro, C. C.: Greedy Randomized Adaptive Search Procedures. In: pp.
219–249.Glover, F., Kochenberger, G. A. (eds.) Handbook of Metaheuristics, Kluwer Academic
Publishers, Boston (2003)

38. Rochat, Y., Taillard, E.D.: Probabilistic diversification and intensification in local search for vehicle
routing. J. Heuristics 1, 147–167 (1995)

39. Taillard, E.D.: Parallel iterative search methods for vehicle routing problems. Networks 23,
661–672 (1993)

40. Tarantilis, C.D.: Solving the vehicle routing problem with adaptive memory programming meth-
odology. Comput. Oper. Res. bf 32(9), 2309–2327 (2005)

41. Tarantilis, C.D., Kiranoudis, C.T., Vassiliadis, V.S.: A backtracking adaptive threshold accepting
metaheuristic method for the Vehicle Routing Problem. Sys. Anal. Model. Simul. (SAMS) 42(5),
631–644 (2002)

42. Tarantilis, C.D., Kiranoudis, C.T., Vassiliadis, V.S.: A list based threshold accepting algorithm for
the capacitated vehicle routing problem. Int. J. Comput. Math. 79(5), 537–553 (2002)

580 J Glob Optim (2007) 38:555–580

43. Tarantilis, C.D., Kiranoudis, C.T.: BoneRoute: an adaptive memory-based method for effective
fleet management. Ann. Oper. Res. 115(1), 227–241 (2002)

44. Toth, P., Vigo, D.: The Vehicle Routing Problem, Monographs on Discrete Mathematics and
Applications. SIAM Philadelphia, PA (2002a)

45. Toth, P., Vigo, D.: An overview of Vehicle Routing Problems. In: Toth, P., Vigo, D. (eds.) The Vehi-
cle Routing Problem, Monographs on Discrete Mathematics and Applications. pp. 1–26.SIAM,
Philadelphia, MA (2002b)

46. Toth, P., Vigo, D.: The granular tabu search (and its application to the vehicle routing problem).
INFORMS J. Comput. 15(4), 333–348 (2003)

47. Xu, J., Kelly, J.P.: A new network flow-based tabu search heuristic for the vehicle routing problem.
Transportation Sci. 30, 379–393 (1996)

	A new bilevel formulation for the vehicle routing problem and a solution method using a genetic algorithm
	Abstract
	Introduction
	Algorithms for the solution of the capacitated vehicle routing problem
	Bilevel formulation for the vehicle routing problem
	Heuristic algorithm for the solution of the Bilevel vehicle routing problem
	General description of hybrid genetic algorithm
	The First Level Problem (Leader Problem)
	Initial population
	Greedy algorithm for the generalized assignment problem
	Calculation of fitness value and selection probability
	Crossover
	Mutation
	The second level problem (follower problem)
	Pure greedy algorithm for the TSP
	Calculation of lower bounds
	Expanding neighborhood search strategy for the TSP
	Population replacement and termination process
	Computational results for the vehicle routing problem
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

